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Spherical 

The mean spherical approximation (MSA) for an arbitrary mixture of charged 
hard spheres with saturating bonds is solved in the Wertheim formalism. Any 
number of bonds is allowed. It is shown that the general solution is given in 
terms of a screening MSA-like parameter F T, a cross-interaction parameter tl n 
that will depend on the binding association equations, the set of binding 
association fractions, and an additional algebraic equation. The equation for F r 
is given for the general case. The equation for ti n, however, depends strongly on 
the particular closure that is used to compute the contact pair correlation func- 
tion. The full solution requires, as in the dimer case recently solved by Blum and 
Bernard, solving m + 2 equations and additionally the inversion of a matrix of 
size [ I v - 1 ) m ]  for a system with m components and v bonds. We recall that 
when v = 1, only dimers are allowed; for v = 2, only linear chains are formed; 
and when v >/3, branching of the polymers occurs. It can be shown that the 
excess entropy for the polymer case is as before, dS MsA=(FT)3/3n +sticky 
terms, where the sticky terms depend on the model and will be given in future 
work. 

KEY WORDS: Ionic mixtures; mean spherical approximation: polymerizing 
ions; multiple binding. 

1. I N T R O D U C T I O N  

T h e  m e a n  s p h e r i c a l  a p p r o x i m a t i o n  ( M S A )  11-3~ is a n  a n a l y t i c a l  t h e o r y  for  

the  p r i m i t i v e  m o d e l  o f  i o n i c  s o l u t i o n s  as  wel l  as  for  m o d e l s  w i t h  m o l e c u l a r  

so lven t s .  ~4-111 S o m e  o f  t h e  r e m a r k a b l e  p r o p e r t i e s  o f  t he  M S A  a re  t he  fact  

t h a t  for  e l e c t r o l y t e s  t h e  m a t h e m a t i c a l  s o l u t i o n  is e x p r e s s e d  in t e r m s  o f  a 

s ingle  s c r e e n i n g  p a r a m e t e r  F,  w h i c h  p l ays  a ro le  s i m i l a r  to  t he  w e l l - k n o w n  
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Debye-Hfickel (DH) screening parameter ho .  The MSA is asymptotically 
correct in the limit of high screening parameter (Debye length going to 
zero, which implies either infinite charge or zero temperature for dense 
systems), ~t2~31 where it satisfies the Onsager bounds ~4~ for the Helmholtz 
free energy and the internal energy of the system. Notice that the require- 
ment for the free energy means that the ratio of the entropy to the internal 
energy must go to zero in this limit, which is true for the MSA. These limits 
are of course satisfied by the hypernetted chain theory (HNC) ~tSI and its 
improved versions. The internal energy of the MSA is an exact lower 
bound ~2'~3~ and is as accurate as the HNC and its modifications for 
extreme high densities and charges. 

A statistical mechanical approach to pairing is that of Stell and co- 
workers/t6 ,s~ in which the association is represented by Baxter's sticky 
potential inside the hard core. The general ionic mixture with arbitrary sur- 
face sticky interactions has been solved in the M S A  t19"2~ and it has been 
shown that the excess functions due to the charges are all ~19"2~1 given in 
terms of the scaling parameter F s, which now depends on the degree of 
association determined by the sticky potential. 

The proper Ornstein-Zernike (OZ) equation which accounts for 
saturation effects was constructed by Wertheim. c22"'-3~ This formalism can 
accommodate both mechanisms in one single association parameter. The 
association causes saturation effects in which only one bond is allowed 
between the ions and the formalism has to be changed at the level of the 
Ornstein-Zernike equation in a special way. The treatment now includes 
the fraction of sites that are bonded, and that fraction is obtained by 
imposing chemical equilibrium-type mass action laws. The Wertheim for- 
malism is the proper way of incorporating the mass action law into the 
statistical mechanical treatment of ionic mixtures. 

This formalism was shown to be very successful for ionic systems, as 
was the HNC approximationJ -'4 _,6~ More recently the Wertheim formalism 
was used to study numerically the binding effect for the restricted MSA ~27~ 
applied to a symmetric 2-2 equal-size electrolyte, with excellent results for 
the thermodynamic functions. A solution of the restricted linear polymer 
MSA has been given by Kalyuzhnyi and Stell. t2s~ 

In this paper we extend the solution of the binding MSA for dimers 
(BIMSA) of our previous work ~29) to the case of an arbitrary mixture of 
polymerizing ions with any number of bonds v. ~3~ As in our previous 
work, the solution is given in terms of a scaling parameter ~4"~9~ F r and a 
number of coupling parameters that depends on the number of binding 
association equations, plus the binding association equations themselves. 
The theory and the analytical solution are presented in Section 2. In this 
case the results will depend on the specific closures taken for the binding 
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association equations. We will discuss one case in this work and leave 
other interesting cases for future publications. The excess thermodynamic 
properties, computed by charging up the "bound" system, keeps the form 
as functions of the new screening parameter F r. 

2. THEORY 

The Wertheim theory was initially formulated for sticky adsorption 
points. The extension to isotropic bonding with saturation effects was 
carried out by Kalyuzhnyi and Stell) 3~) We consider a system with an 
arbitrary number of components 0 < i ~< m, with number density p;, charge 
ez; (e is the elementary charge), and hard-core diameter a; .  The solvent is 
a continuum with dielectric constant Co. 

The temperature of the system is T, Boltzmann's constant is kB, and 
we use fl = 1/kB T throughout. Our system is neutral: 

~p,:,=O (1) 
k 

We define the matrices h,j and %, which correspond to the pair indirect 
and direct correlation functions 

h// ] h0= h~O) (ob~ 
hu J h~,O) (,,o) , a, b4:O (2) 

..100) e(0bl'] 
C i j  : r i j  -- i j  | c(aO) l a b )  " o co j a ,b~O (3) 

where the indices a, b indicate the degree of association. 
The density parameters in the Wertheim-Ornstein-Zernike equation 

(WOZ) are defined as 

_•0) (el) ] 
r ~  (4) 

o ;=  ui-~b~ O~i , , ,b lOn(v_a_b)  

where v ~> a is the largest number of bonds per particle and the matrix e ~"';'~ 
has nonzero elements when the Heaviside function is satisfied. We have 

~,~ (5) 
b=O 
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so, for example, 
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and so on. 

O.I.2) __ _10) , - v ~  ( 6 )  

0.('~/ -v i -  ~(o) + p~l) (7) 

cT(O) __ ~ ( 0 )  ~ ( I ) - -  ~12)  
i - - P i  "{- 1 / i  "1- D i  ( 8 )  

In Wertheim's theory the density of i is split into "bonded" pl ") and 
"not-bonded" pl ~ parts, which correspond to the (a) associated and non- 
associated ions, respectively. We have the relation for the total or initial 
density of species i 

P i = 0-(i ~ (9) 

To avoid confusion in the notation with the symbol a, it will be convenient 
to use instead the degree of dissociation 

( a l  

O~(i ''1 ~ O'i 
Pi 

r ( a ) l  
~i=PiLO~i J =PiOti 

Then, since _~o) 1, ~t. i = 

O, i = ~( i l )  ~i(21 

For example, for v = 2 

10) 

I1) 

12) 

which defines the matrix at. The "normal" pair correlation function there- 
fore is 

h,j(r) = coo~ h~ (r)+ ~, ~;'"'h~'~ ) 
t t  

( b )  (Ob) % ~j h/j (r) (13) 
b a,  b 

The WOZ is 

h,j(r) = c0.(r) - y ,  p ,  f d r  I elk ( [r t -- r[) Ilkhkj(rl) (14) 
k 

where r is the position, and the superscripts a, b run from 0 to v. 
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The BIMSA boundary conditions are taken as ~t'2s~ 

u t , J -  eo r 10 ' r>crij (15) 

where a u =  (1/2)(a,.+ aj) is now (and in the rest of this paper) the distance 
of closest approach of the ions i and j. 

Consider the sticky interactions .,t . u~i (i) for the pair tj, 

exp[ st r ~,,b)- --fluij( ) ] = ~ V  6 ( r - - a ~ )  (16) 

where '#v is the matrix of the sticky interactions, which are given. Then, the 
Mayer function 

Jii = exp[ -fluiS! (r)] = -1  + eJ3~'b'c~(r - ~,)-) (17) 

and the fraction of nonbound ions i, e.,~2_,._,3._,7~ is given by a set of equa- 
tions that depends on the closure used. Our discussion is relevant to any 
closure of the WOZ of the form 

_~b~ = Functional [g0.(aifl ~,j  ~ I,,b~] (18) ~i  I 

Specific closures for linear polymers, for example, have been discussed by 
several a uthors.C 3). 32 

The feature of our solution is that the electrostatic charging process 
can be computed in the MSA irrespective of the kind of closure. This 
happens also when the normal Ornstein-Zernike equation is used. 119'21"331 

To make contact with earlier work ~9"2~ we will use the parameter tlj, 

t~,m= Functional,[g0.(aifl_ ...?l"bq~i J (19) 

The model should provide the relation of this parameter to the 0c 
parameters of Eq. (18). 

For the pair correlation function matrix the boundary condition is, in 
this notation, 

h~i(r)= [ - 1  0 ] 
0 t~Tbl/(27r t~(r--tT~j) " r~tT~i (20 )  

where t I"b) is the sticky parameter for the association of the ions i and j -0  
defined by Eq. (19). The observation already made in previous work ~'~'2j~ 
is that there is an explicit general solution of the MSA for the class of 
closures defined by Eq. (20). 
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We use now the extension of the Baxter-Wertheim (34"35) factorization 
method to charged systemsJ 4~ We define the projections Jo and S o, 

Jo(,') = 2n L) ~ dssho(s) 

S0(r) = 2 n  I. ~- dssco(s) 

From the boundary conditions (15) and (20) we get 

(21) 

(22) 

f nr 2 + JC.9~ J~.gb~l 
Jo (r) = (.o) Y (,,hi , - 'J / r~<a o (23) 

Jo  Jo- ] 
S o( r )=  f le"-zJz,e-""l[ 1 00] r > a,j (24) 

% it 0 ' 

where the limit ll = 0 needs to be taken at the end of the calculation. 
We solve the set of coupled equations, as in previous work, 

So(r) =.~o(r) ~ p k  l drl ~2ik(rj) or  -- ak2?jk(r I -- r) 
k 

Ju(r) = 3ij(r) + ~ Pk I drt Jik(Ir, -- rl) ek~kj(rl ) 
k 

(25) 

(26) 

[- a(0) (l(a)'] 
__ J ;J 

where 

(28) 

Performing the integrals in Eq. (25), we see that in the limit It = 0 both sides 
have a simple pole. The residues of this pole must be equal, and therefore 

4n fie"__= E pk[ ak Oka T]CO0 } (29) 
s k 

2is < r (27) ~ii(r) ~ [Q0(r)  + to. ] O(a O - r) - ziaje -"", 

where we used the definition 

;v, = � 8 9 1 7 6  o;) 

The factor correlation functions ~o-(r) are unknown. 
From the analysis of the singularities of the problem (a'(9~ we see that 

this function must be of the form 
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Similarly, from the discontinuity at r =  tr/j in Eq. (25) we need 

[ 0 o ] 
t i j =  0 [ t ]~  'bl (31) 

It is also clear that from Eq. (21, 26) Q/j(r) must be a polynomial of 
second degree, which is zero for r=tr / j .  For convenience we write 

Q/j(r) = (1/2) Aij(r  - a0-)(r - 2ji) + [~o.(r - aij) (32) 

where the coefficients are matrices 

A/ j=[  A~~176 A ~~ (33) L A/J ] m ~1o) (ab) 

and 

I BI.oo) B[Ob)q 
II/j= B~,,o, ,-0 / B.,b N (34) 

, -0" " - / j  J 

We remark some of the properties of this function: 

Qo.(ai/) = 0 (35) 

Q~(al/) = (1/21 a/A,). + Ii/j (36) 

This last quantity yields the contact probability needed to calculate the 
closure of the Wertheim theory (19). In fact, from Eq. (26) we get the 
relation 

27ra/ jgo.(a/ j )=�89 ~ p k t i k ~ k [ - - a k [ I k j - - z ~ a j + t k y  ] (37) 
k 

The solution of these equations leads to 

BiOO I _ z~a j  + (o1_1o) fl(.pb~ (01..~b) M i . /  , b = O, 1 ..... v =M~ . /  , (38) r ij - -  - ~ ' -  - -  r ~j 

fll,,b) ~,,j (b) (39) =B+ aj , a~> 1, b = 0 ,  1 ..... v 

and 

A}"b)=O, a>>,l, b = 0 , 1  ..... v (40) 

~_~n[ n I +2a}OlqB ' (oh,_ 2re _a,) 2a}bl,ln (411 A}~176 A+ + 

822/8411-2-13 
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We have used the following notation'4']9): 

Furthermore, 

c~,, = ~ pkcr~ (42)  
k 

A = I - ~c~3/6 (43 )  

X~_= ~pkzka~. (44) 
k 

Bj.b) "~ . [,t). (~b) =2.. ,Pkz~Otk J k j  (45) 
k 

Z Br (46) B ; =  j J 
b 

corresponds to the total electrostatic interaction parameter Bj of previous 
work.  (4'19~ It will be convenient to introduce 

We have also 

and 

N r =  B r  + n ~ o.3n r 7c j . ~ Pk kz~- +~-~g2 (47) 

k 

m t o ,  = NtO~ r~ 3 ot~. ~ k  
j ~ + ~ Z P t , ' ~ T k  E ( " ' R ' a '  

k a>~] 

7~ T I1 e = ~-~ ~ pkak[akNk + Zk] 
k 

We use the notation 

o, "(0) ~0) J*(Ol . _ . o~'(b) ~ D(b) 
"~ i : X i  : G i l V l  i "ff d'i~ "~ i ~-~ , 

and we will use this symbol in vector form, 

.f,o, ] 

~J"/' l ~i = ~.(21j 

a~>0 (48) 

(49) 

(50) 

b>~l (51) 

(52) 
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We turn to the calculation of the coefficients aj. From Eq. (25), taking the 
first derivative, and since the direct correlation function must be finite at 
the origin, we get 14"~9~ 

--2Qii(O)=~,Pk[Qik(2ki)--ziak+tik]' ~ k [  Q i k ( 2 k i )  T __ _ i a k  . T .~_ r ] T (53) 
k 

Using Eq. (32) together with the above results, we find after some long 
but straightforward algebra 

ulo~ = 1 , ~ [ - 2 M ' ,  ~  2o-,q '~] 

1[ ] .7' = ~  -2B ' ,  ~ +Y, {It],, p,-k~,}'"' 
k 

where ~ is defined by 

we get 

k 

Here N~ is defined by Eq. (47) and qn is given by Eq. (50). 
We examine again Eq. (25). From the symmetry requirement 

C q ab) (ha) 
ij = f j i  

~u(2ji ) ~ v = z?si (20.) 

Using Eqs. (27) and (32), we obtain 

fl,oo,_ ..,o, = p~o,,~j+ :#o ,  
ij O i  ~- - - iUj  

ij ~  - i u j  t " j i  O j  

f l i a b J _  - -  i?lba) 
iJ" O i - - I ' j i  (Tj 

and from Eq. (38) 

[x l  o,] a)o,= [x)  o,] a', o' 

[x l  o' ] aJ"= ojB~'a', o' 

~,~"'a) ~'= ~j87'~4"' 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 
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Then 

2F T 
a~i,n= /fl,,~ a>~O (65) 

where F r is the MSA scaling parameter. In matrix form, 

2F r 

[a,,.] = T  [G]  66) 

Here ~ is given by Eq. (56), N~ is defined by Eq. (47), and i18 is given 
by Eq. (50): 

B 71: ~ ,  ~, o~qa) (a) 1 (67) 

The full solution of the problem is obtained by solving the linear 
system (59)-(67): 

[o,///,-k] [ ~k] = [z,] (68) 
k 

where [ a ] ,  is defined by Eq. ( 11 ) and 

[. ~/,'k ] = ( 1 + FT~) 6i1r "-F 6r i [ (lt/2A)0 akai 

The formal solution of Eq. (68) is 

0] 
__ E[]ik tOkllk (69)  

(70) 

E@'] ,=~  E,////i~] - '  [zk] (71) 
k 



Multiple-Binding MSA for Ionic Mixtures 201 

Explicit forms of this matrix for various models for the linear chain 
and the colloidal mixture will be given in future work. Using this result in 
Eq. (29), we get the closure equation for the parameter F r, 

fie'- 
[ r " ]  -" = ~ 2 p k [ & ]  ["k] [&] T 

'go k 
(72) 

There is a second nonlinear equation for the parameter qe, which 
depends strongly on the closure approximation for the single density 
matrix. This equation changes with the model and the approximations, but 
requires the contact probability. We observe that from Eqs. (36), (38), and 
(41) we get for the contact probability in the MSA, 

2nor u ,,b = 2ha.. ~,.H."~asP)'r162 - 2re fie2 :~"~'.~ gii (6tO') ,jo,j , ,~, 
go 

7/0"  i 

." ,~'"b)r-~u t ~,,o - 1 ] [6/,o -- 1 ] + ~ rf) f i , ,o[fbo -- 1 ] 

, / ro ' j  
i bO L v a o  - -  t ~ rl")O r,~ 1], a ,b>~O (73) 

We have used 

< ' =  y. p~o~. Y. ~,,,,),,,,~) ~ -  "~v (74) 
J 

k t~ 

and 

, ~ ~  & (75) 
k 

We will need in the next section 

O A E  MSA] 
.,ar'U~., (76) 

From the above equations we get by direct differentiation an expression of 
the derivative of the right-hand side term: 

[ 0[~,.]] =~.ak[.#m]-1 [~i] (77) 
OFT J ~.' l< 
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Using the closure relation (72), we get the simple and useful relation 

[/~ 0 sE Ms'] [rT] -' 
(78) 

which will be used below. 

2.1. Thermodynamic Properties 

The standard expression for the excess energy per unit volume is 14) 

AEMSA = �89 ~ PiPj f~ dr uo.(r) gu(r) 4m "2 (79) 
t j  

where uo.(r) is the electrostatic interaction potential and go(r) = ho.(r) + 1 is 
the total radial distribution function. After some calculations 14'-'9's6~ we get 

"'t., , '>--,l  (801 tX . P i z i N i  = ?  . PitTi 

We calculate the excess free energy by charging up the system of the 
polymerizing discharged ions. We use the thermodynamic relation 

0 07 (fl AA MsA) = AE MsA (81) 

where AAMSA is the excess free energy. Integrating by parts this equation, 
we have 119"36) 

f : r  dF' fl AAMSA=AEMSA - fl, O AEMS A 

We need to compute 

O A E  MsA [ f lOAE MsA] ~ , f A E  M ] O~xi, , 07~ -[ ~ J +~ 'p0~sA' P 

(82) 

(83) 

Using Eq. (78), we get the following expression of the Helmholtz flee 
energy: 

fl  z~A MSA -~. ~ ,~E MSA 't- [ / - , r ]  3 fl ,~S sticky (84 )  
3rr 
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where 

z~SStickY=kB dr' y 5". 0 4EMS______~ A] O~") 
i.,, O~ ") J r" , ,  O F t  

[ 0 AE MsA ] Ot("'a)qi.j 

+ X ~ b-f-el L oti,~ J j,b FB. (~ 
(85) 

We need to calculate O~(i")/OF r and Ot("'b)/OI " r  which are obtained i.j 
from the closure relations of the association problem. An explicit general 
solution of this system is complex, but some simpler cases of interest can 
be solved explicitly. This is left for the future. 

The excess osmotic coefficient q~MSA is obtained as before from the 
thermodynamic relation ~ tg) 

O A A  MSA I 

= o L-W-o j 

F T = const 

[r~] 3 
r r . . . . .  t 3rr(o 

(86) 

where (o is given by Eq. (42). Finally, we get the activity coefficient from 
the thermodynamic formula 

A A  MSA 
fl  + Aq) MsA (87) A In ~.v_ = . 

~o 

which yields 

A In )'-v- = f l  O~o J , - ,=  . . . .  , o~--~ j , -T . . . . . .  , (88) 
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